

Topological insulators

Outlines

Topological insulator (TI)

- Where did TI come from?
- What is topology?
- What is a TI?
- Who are TIs? Graphene, HgTe, Bi2Se3, Heuslers
- What is the recent progress?
- Topological mirror insulator

Travel of electrons in the device

Joule's heat: Q=l² **R** t **R**: resistance

Human society

Information highway ?

Separate the electron motion

K. von Klitzing 1985 Nobel Prize in Physics

Avoid backscattering

Quantum Hall Effect

Edge conduction

Quantum Spin Hall effect (2D TI)

GaAs

Predicted for HgTe in 2006 by Bernevig, Huges and Zhang.

X.-L. Qi and S.-C. Zhang, Physics Today 63, 33 (2010).

Band inversion

k-space

-X Х Г

Understand the topology

From QHE to QSHE

Surface states due to band inversion

Understand the topology

Different from trivial surface states

Only in a small energy region, they do look quite similar.

Robustness of topological states

Normal surface states

Topological surface states

Topological Insulators

TI is an insulator but conducts.

Materials for TIs

For a review on materials, **BY** and S.-C. Zhang, Rep. Prog. Phys. 75, 096501 (2012).

Interesting Physics and applications

- ♦ Spin-momentum locked, pure spin current. Spintronics application.
- ♦ Majorana particles. Quantum computation.
- ♦ Topological magnetoelectric effects
- ♦ Thermoelectric devices
- ♦ Transparent conducting layer

$$S_{\theta} = \frac{\theta \alpha}{4\pi^2} \int d^3x dt E \cdot B$$

Bonding state "-" parity

Г

Г

Shockley edge states (spinless)

FIG. 2. Energy spectrum for a one-dimensional lattice with eight atoms.

Polyacetylene (Su, Schrieffer, and Heeger, 1979, 1980) model,

Quantum Spin Hall Effect in Graphene

FIG. 1. (a) One-dimensional energy bands for a strip of graphene (shown in inset) modeled by (7) with $t_2/t = 0.03$. The bands crossing the gap are spin filtered edge states.

Kane, Mele PRL 95, 226801 (2005)

The bulk band structure of TIs

Z₂ topological invariant

Band theory [Fu, Kane & Mele (2007), Moore & Balents (2007), Roy (2007)]

Inversion symmetry: δ_i is the parity product of all valence Bloch states.

A note about the Parity

The parity of the Bloch wave function in a lattice is **NOT** equivalent to the parity of the local orbital,

when the inversion center does not locate at the atom center.

Characterize TIs

Z₂ topological invariant

Band theory [Fu, Kane & Mele (2007), Moore & Balents (2007), Roy (2007)]

Inversion symmetry: δ_i is the parity product of all valence Bloch states.

Field theory [Qi, Zhang, et. al. (2008, 2009), Wilczek, (1987, 2009)]

$$S_{\theta} = \frac{(8/\pi) \int d^{3}x dt (\epsilon \mathbf{E}^{2} - (1/\mu)\mathbf{B}^{2})}{\mathbf{H}}$$

$$S_{\theta} = \frac{\theta \alpha}{4\pi^{2}} \int d^{3}x dt \mathbf{E} \cdot \mathbf{B}$$

$$\theta = \begin{pmatrix} \pi: \text{ topological insulator} \\ 0: \text{ regular insulator} \end{pmatrix}$$

Wang & Zhang (2012) Simplified Topological Invariants, G(w=0,k)

Characterize TIs

Z₂ topological invariant

Band theory [Fu, Kane & Mele (2007), Moore & Balents (2007), Roy (2007)]

Inversion symmetry: δ_i is the parity product of all valence Bloch states.

TI materials

HgTe QWs (2D TIs)

 Bi_2Te_3 , Bi_2Se_3 and Sb_2Te_3 (3D TIs)

Zhang group, Science 314, 1757 (2006); Molenkamp group, Science 318, 766 (2007). Zhang *et al. Nature Phys.* 5, 438 (2009). Xia et al. *Nature Phys.* 5, 398 (2009). Chen et al. *Science* 325, 178 (2009).

B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006).

B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006).

HgTe QWs

Transport measurements of the edge state conductance.

M. König et al. Science 318, 766 (2007)

Brüne et al. PRL106, 126803 (2011).

Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃

Layered semiconductor with strong SOC.

Zhang et al. Nature Physics 5(6) 438 (2009).

Zhang *et al. Nature Physics* 5(6) 438 (2009).

Zhang et al. Nature Physics 5(6) 438 (2009).

Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃

Xia et al. 2009 *Nature Physics* 5(6) 398. Chen et al. 2009 *Science* 325(5937) 178. Hsieh et al. 2009 *PRL* 103(14) 146401. Hsieh et al. 2009 *Nature* 460(7259) 1101.

Find new TI materials

Strong SOC , λ_{so} is proportional to Z⁴.

Thermoelectric materials

HgTe variation: Heulser compounds

S. Chadov et al. Nature Mater. 9, 541 (2010). H. Lin et al. ibid 9, 546(2010).

Materials engineering

Topological Insulators from a Chemists Perspective Angew. Chem. Int. Ed. (2012) 51, 7221.

Materials engineering

[(PbTe)-Bi2Te3)] - Bi2Te3

Bi₂Se₃ type: TlBiSe₂ and TlBiTe₂

Yan et al. EPL 90, 37002 (2010),

Lin et al. PRL105(3) 036404 (2010), Eremeev et al. JETP Lett. 91(11) 594 (2010).

Bi2Se3 type: TlBiSe2 and TlBiTe2

TIBiTe2 :Topological superconductor. CuxBi2Se3, PdxBi2Te3

Sato et al. *PRL* 105(13) 136802 (2010), Kuroda et al. ibid, 105(14) 146801 (2010), Chen et al. ibid, 105(26) 266401 (2010), Xu et al. *arXiv:1008.3557* (2010).

Search for a weak 3D TI

(0;001) Weak 3D TI

(1;000) Strong 3D TI

Generalization of Heusler compounds

Following Heusler's idea to design a weak TI

3D weak TIs

The weak TI has a "strong" side.

Z. Ringel, Y. Kraus, and A. Stern, Phys. Rev. B 86, 045102 (2012).

R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Phys. Rev. Lett. 108, 076804 (2012).

The first 3D weak TIs

- The first weak TI material, KHgSb
- Surface state with two Dirac cones
- Eg ~ 0.2 eV >> RT

KHgSb (synthesized in 1980)

BY, Mulechler, Felser. PRL 109, 116406 (2012).

3D weak TIs

Bernevig-Hughes-Zhang model, minimal Hamiltonian

BY, Mulechler, Felser. PRL 109 (2012) 116406.

Extract a QSH layer from the layered weak TI

IV-IV 8 electrons

H		XYZ Heusler compounds															Не
Li .98	Be 1.57												C 2.55	N 3.04	O 3.44	F 3.98	Ne
Va	Mg 1.31											AI 1.61	Si 1.90	P 2.19	S 2.58	CI 3.16	Ar
K .82	Ca	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
Rb	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.60	Mo 2.16	Tc 1.90	Ru 2.20	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.10	 2.66	Xe 2.60
Cs .79	Ba 0.89		Hf 1.30	Ta 1.50	W 1.70	Re 1.90	Os 2.20	Ir 2.20	Pt 2.20	Au 2.40	Hg 1.90	TI 1.80	Pb 1.80	Bi 1.90	Po 2.00	At 2.20	Rn
Fr	Ra 0.90	$\backslash \rangle$															
		//	La 1.10	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.20	Gd 1.20	Tb 1.10	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.10	Lu 1.27
			Ac 1.10	Th 1.30	Pa 1.50	U 1.70	Np 1.30	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.30	Cf 1.30	Es 1.30	Fm 1.30	Md 1.30	No 1.30	Lr 1.30

QSH layer

Y. Xu, BY, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang, PRL 111, 136804(2013).

QSH layer with large energy gap

Recent MBE growth Zhu et al. arXiv:1506.01601 (2015)

Gold surface

Gold surface

51

Gold surface

B. Yan et al. Nature Communications 6, 10167 (2015).

Topological mirror insulator

Figure 1 | SnTe lattice and Brillouin zone. (a) the crystal structure of SnTe; **(b)** the face-centered-cubic (FCC) Brillouin zone showing the plane $\Gamma L_1 L_2$, which is invariant under reflection about the (110) axis and projects onto the $\overline{\Gamma} \overline{X}_1$ line in the [001] surface.

Fu 2012'

Materials design for TIs Heusler Honeycomb Heusler Stanene Stanene with half passivation **Diamond lattice** Graphene lattice Magnetic graphene Graphite lattice 2D TI (QSH) 3D strong TI 3D weak TI QAH PRL 113, 256401 (2014). BaBiŌ₃ Nature Physics 9, 709 (2013).

Topological insulators and topological metals

Summary

Topological insulators

- Topological surface states, Dirac cone
- 2D TI, 3D strong and weak TIs
- Topological metals (3D graphene)
- Topological surface states, Fermi arcs
- Chiral anomaly, MR, high mobility

Thanks for your attention!