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Outlines	
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Topological insulator (TI) 
•  Where did TI come from? 
•  What is topology? 
•  What is a TI? 
•  Who are TIs?   

Graphene, HgTe, Bi2Se3, Heuslers 
•  What is the recent progress? 
•  Topological mirror insulator 



Travel	of	electrons	in	the	device		
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Joule's heat: Q=I2 R t   
R: resistance 



Human	society	
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Information highway ? 



Separate	the	electron	mo=on	
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Electron high way 
by high B at low T 

Avoid backscattering 

K. von Klitzing 
1985 Nobel Prize in Physics 

Quantum Hall Effect 



Quantum	Spin	Hall	effect	(2D	TI)	
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Predicted for HgTe in 2006 
by Bernevig, Huges and Zhang. 

GaAs 

X.-L. Qi and S.-C. Zhang, Physics Today 63, 33 (2010). 



Band	inversion	

7	

-X      Γ        X -X      Γ        X 

Understand the topology 

k-space 

Normal insulator Topological insulator 



From	QHE	to	QSHE		
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Time reversal symmetry (TRS) 

Kane & Mele,  
2005, Z2 invariant 



Surface	states	due	to	band	inversion	
Understand the topology 

Band	inversion		
inside	the	bulk	

Topological	states		
on	the	boundary	

Think	the	bulk!	



Different	from	trivial	surface	states	

10	

valence 

conduction  

valence 

conduction  

Only in a small energy region, they do look quite similar. 

valence 

conduction  

valence 

conduction  



Robustness	of		topological	states		

Normal surface states Topological surface states 



Topological	Insulators	

•  Metallic edge or 
surface states 

•  Spin-momentum 
locking 

12	TI is an insulator but conducts. 

¼ grahene 



Materials	for	TIs	

For a review on materials,  
BY and S.-C. Zhang, Rep. Prog. Phys. 75, 096501 (2012). 



Interes=ng	Physics	and	applica=ons	

²  Spin-momentum locked, pure spin current. Spintronics application. 
²  Majorana particles. Quantum computation. 
²  Topological magnetoelectric effects 
²  Thermoelectric devices 
²  Transparent conducting layer 
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Graphene		
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preserved then this is the only allowed spin dependent term
at q ! 0. If the mirror symmetry is broken (either by a
perpendicular electric field or by interaction with a sub-
strate) then a Rashba term [10] of the form "s# p$ % ẑ is
allowed,

H R ! !R y""x#zsy & "ysx$ : (4)

For !R ! 0, !so leads to an energy gap 2!so with E"q$ !
'

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"@vFq$2 (!2

so

p
. For 0< !R < !so the energy gap

2"!so & !R$ remains finite. For !R > !so the gap closes,
and the electronic structure is that of a zero gap semicon-
ductor with quadradically dispersing bands. In the follow-
ing we will assume that !R < !so and analyze the
properties of the resulting gapped phase. This assumption
is justified by numerical estimates given at the end of the
Letter.

The gap generated by "z#zsz is different from the gap
that would be generated by the staggered sublattice poten-
tials, "z or "zsz. The ground states in the presence of the
latter terms are adiabatically connected to simple insulat-
ing phases at strong coupling where the two sublattices are
decoupled. In contrast, the gap parameter "z#zsz produces
gaps with opposite signs at theK andK0 points. This has no
simple strong coupling limit. To connect smoothly between
the states generated by "z and "z#zsz one must pass
through a critical point where the gap vanishes, separating
ground states with distinct topological orders.

The interaction (3) is related to a model introduced
by Haldane [11] as a realization of the parity anomaly in
"2( 1$-dimensional relativistic field theory. Taken sepa-
rately, the Hamiltonians for the sz ! '1 spins violate time
reversal symmetry and are equivalent to Haldane’s model
for spinless electrons, which could be realized by introduc-
ing a periodic magnetic field with no net flux. As Haldane
showed, this gives rise to a "z#z gap, which has opposite
signs at the K and K0 points. At temperatures well below
the energy gap this leads to a quantized Hall conductance
"xy ! 'e2=h. This Hall conductance computed by the
Kubo formula can be interpreted as the topological Chern
number induced by the Berry’s curvature in momentum
space [12,13]. Since the signs of the gaps in (3) are
opposite for opposite spins, an electric field will induce
opposite currents for the opposite spins, leading to a spin
current Js ! "@=2e$"J" & J#$ characterized by a quantized
spin Hall conductivity

"sxy !
e

2$
: (5)

Since spin currents do not couple to experimental probes it
is difficult to directly measure (5). Moreover, the conser-
vation of sz will be violated by the Rashba term (4) as well
as terms which couple the $ and " orbitals. Nonetheless,
Murakami et al. [14] have defined a conserved spin sz"c$,
allowing "sxy to be computed via the Kubo formula. We
find that "sxy computed in this way is not quantized when

!R ! 0, though the correction to (5) is small due to car-
bon’s weak SO interaction.

In the quantum Hall effect the bulk topological order
requires the presence of gapless edge states. We now show
that gapless edge states are also present in graphene. We
will begin by establishing the edge states for !R ! 0. We
will then argue that the gapless edge states persist even
when !R ! 0, and that they are robust against weak
electron-electron interactions and disorder. Thus, in spite
of the violation of (5) the gapless edge states characterize a
state which is distinct from an ordinary insulator. This QSH
state is different from the insulators discussed in Ref. [5],
which do not have edge states. It is also distinct from the
spin Hall effect in doped GaAs, which does not have an
energy gap.

For !R ! 0, the Hamiltonian (2) and (3) conserves sz,
and the gapless edge states follow from Laughlin’s argu-
ment [15]. Consider a large cylinder (larger than @vF=!so)
and adiabatically insert a quantum % ! h=e of magnetic
flux quantum down the cylinder (slower than !so=@). The
resulting azimuthal Faraday electric field induces a spin
current such that spin @ is transported from one end of the
cylinder to the other. Since an adiabatic change in the
magnetic field cannot excite a particle across the energy
gap !so it follows that there must be gapless states at each
end to accommodate the extra spin.

An explicit description of the edge states requires a
model that gives the energy bands throughout the entire
Brillouin zone. Following Haldane [11], we introduce a
second neighbor tight binding model,

H !
X

hiji&
tcyi&cj& (

X

hhijii&'
it2(ijs

z
&'c

y
i&cj': (6)

The first term is the usual nearest neighbor hopping term.
The second term connects second neighbors with a spin
dependent amplitude. (ij ! &(ji ! '1, depending on the
orientation of the two nearest neighbor bonds d1 and d2 the
electron traverses in going from site j to i. (ij ! (1 (& 1)
if the electron makes a left (right) turn to get to the second
bond. The spin dependent term can be written in a coor-
dinate independent representation as i"d1 # d2$ % s. At low
energy (6) reduces to (2) and (3) with !so ! 3

!!!
3
p
t2.

The edge states can be seen by solving (7) in a strip
geometry. Figure 1 shows the one-dimensional energy
bands for a strip where the edges are along the zigzag
direction in the graphene plane. The bulk band gaps at
the one-dimensional projections of the K and K0 points are
clearly seen. In addition two bands traverse the gap, con-
necting the K and K0 points. These bands are localized at
the edges of the strip, and each band has degenerate copies
for each edge. The edge states are not chiral since each
edge has states which propagate in both directions.
However, as illustrated in Fig. 2 the edge states are ‘‘spin
filtered’’ in the sense that electrons with opposite spin
propagate in opposite directions. Similar edge states occur
for armchair edges, though in that case the 1D projections

PRL 95, 226801 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005

226801-2



Graphene		
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Graphene		
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Graphene		
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Shockley edge states (spinless) 



Graphene		
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Polyacetylene 
(Su, Schrieffer, and Heeger, 1979, 1980) model,  
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Quantum	Spin	Hall	Effect	in	Graphene		
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Kane, Mele PRL 95, 226801 (2005)  



The	bulk	band	structure	of	TIs		
Z2 topological invariant 
Band theory  [Fu, Kane & Mele (2007), Moore & Balents (2007), Roy (2007)]  

ν0 =   1: topological insulator 
0: regular insulator 

Inversion	symmetry:		δi	is	the	parity	product	of	all	valence	Bloch	states.	

2D 3D (ν0 ; v1v2v3) 

=±1 

Ki Normal TI 

1 Γ + − 

3 X + + 

3 M + + 

1 R + + 

ν0 0 1 

R Γ X M R Γ X M 

  Normal insulator TI 

− 
− + 

+ 
Ki = - Ki + n K0 

Γ  (0 0 0) 
X  (½ 0 0 ) 
M (½ ½ 0) 

R  (½ ½ ½) 

0 

Parity of valence bands Time reversal  
invariant k-point 

R Γ X M 

Atomic insulator 

s 

p 



A	note	about	the	Parity		
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p orbital 

s orbital +	 -	

The parity of the Bloch wave function in a lattice is NOT equivalent to  
the  parity of the local orbital,  
when the inversion center does not locate at the atom center. 

Anti-bonding state 

Bonding state  “+” 

Bonding state 

“-” Anti-bonding state 

“+” 

“-” 

“-” 

“+” 



Characterize	TIs		
 
Z2 topological invariant 
Band theory  [Fu, Kane & Mele (2007), Moore & Balents (2007), Roy (2007)]  

Field theory [Qi, Zhang, et. al. (2008, 2009), Wilczek, (1987,2009)]  
 
 
 
 

ν =   1: topological insulator 
0: regular insulator 

Inversion	symmetry:		δi	is	the	parity	product	of	all	valence	Bloch	states.	

2D 3D 

θ =   
π: topological insulator 
0: regular insulator 

θ 
+ 

23	

(ν ; v1v2v3) 

=±1 

+	 +	

-	 +	

Wang & Zhang (2012) Simplified Topological Invariants, G(w=0,k)  



Characterize	TIs		
 
Z2 topological invariant 
Band theory  [Fu, Kane & Mele (2007), Moore & Balents (2007), Roy (2007)]  

ν =   1: topological insulator 
0: regular insulator 

Inversion	symmetry:		δi	is	the	parity	product	of	all	valence	Bloch	states.	

2D 3D (ν ; v1v2v3) 

=±1 

+	 +	

-	 +	

Z 

Γ 

+ + 

+ - 

+ + 

+ - 

(0;001) 
Weak 3D TI 

(1;000) 
Strong 3D TI 

ν=1  
2D TI 

Γ 

+ 

+ - 

+ 

Γ - 

+ + 
+ 

+ + 

+ + 

ν1 ν2 

ν3 

Topological  
Crystalline/Valley Insulators.  
Fu, PRL 106, 106802 (2011). 
Slager et al. arXiv:1209.2610 (2012) 



Band inversion 

- 

+ 

+ 
- 

Te-p 

Hg-s 
Te-p 

Cd-s 

HgTe	QWs		(2D	TIs)	

Zhang group,  Science 314, 1757 (2006);  
Molenkamp group, Science 318,  766  (2007). 

Zhang et al. Nature Phys. 5, 438 (2009). 
Xia et al.      Nature Phys. 5, 398 (2009). 
Chen et al.   Science 325, 178 (2009). 

Bi2Te3,	Bi2Se3	and	Sb2Te3		(3D	TIs)	

+ 

- 

- 
 

+ Se-pz 

Bi-pz 

TI	materials		

No inversion 



HgTe	QWs	

B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006). 26	

Band inversion 

- 

+ 
+ 
- 

Te-p 

Hg-s 
Te-p 

Cd-s Hg 

Te j = 3/2 

SOC Crystal field 

pxyz 

Hg-s 

j = 1/2 

Hg-s 

s s 

Cd s s 

Te 

SOC Crystal field 

j = 1/2 pxyz 

s s 

px±ipy; pz 

px±ipy 

j = 3/2 

px±ipy; pz 

px±ipy 



HgTe	QWs	
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 Hg-s 

 Te-p  Hg-s 

Te-p 

B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006). 

d < dc=6.3 nm d > dc=6.3 nm 



HgTe	QWs	

M. König et al. Science 318, 766 (2007) 28	

Transport measurements of the edge state conductance. 



Strained	HgTe,	3D	TI	

Brüne et al. PRL106, 126803 (2011).   29	

X. Dai et al.  Phys. Rev. B 77, 125319 (2008). 
S.C. Wu et al. EPL, 107 (2014) 57006. 

px±ipy 
pz 
s 



Bi2Se3,	Bi2Te3	and	Sb2Te3	

Zhang et al. Nature Physics 5(6) 438 (2009). 

Layered semiconductor with strong SOC. 

30	



Bi2Se3,	Bi2Te3	and	Sb2Te3	

Z2= (1;000) 

31	Zhang et al. Nature Physics 5(6) 438 (2009). 

With SOC 

SOC 



Bi2Se3,	Bi2Te3	and	Sb2Te3	
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Sb2Se3                               Sb2Te3 
 
 
 
 
 
Bi2Se3                                 Bi2Te3 

Zhang et al. Nature Physics 5(6) 438 (2009). 



Bi2Se3,	Bi2Te3	and	Sb2Te3	

Bi2Se3 Bi2Te3 

Xia et al. 2009 Nature Physics 5(6) 398. Chen et al. 2009 Science 325(5937) 178. 
Hsieh et al. 2009 PRL 103(14) 146401. Hsieh et al. 2009 Nature 460(7259) 1101. 33	

ARPES experiments 

Problem:		
Bi2Se3,	n-type,	Se	vacacny	
Bi2Te3,	n-type,	Bi-Te	an=site	defect	
Sb2Te3,	p-type,	Sb	vacancy	



Find	new	TI	materials	

34	

Strong SOC ,  λso  is proportional to  Z4. 



Thermoelectric	materials	
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ZT=TS2σ/κ 
Heavy	elements(κ,S)		 Strong	SOC	

Smaller	gap	(σ)	 Band	inversion	
TI 

Snyder & Toberer 
Nature Mater. 
7,105 (2008). 



HgTe	varia=on:	Heulser	compounds	

YZ: zincblend lattice 
X:   stuffed atom 
 
8 or 18 valence electrons. 

S. Chadov et al. Nature Mater. 9, 541 (2010). H. Lin et al. ibid 9, 546(2010). 

IIb	 VI	

Ib	 VI	I	

HgTe 

VIII	 V	III	

KAuTe 1+11+6 

LaPtBi  3+10+5 

IIb	

V	

I	

KHgSb 
1+2+5 

2+6 



Materials	engineering	
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Topological Insulators from a Chemists Perspective 
Angew. Chem. Int. Ed. (2012) 51, 7221. 

CeOs4Sb12 



Materials	engineering	
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Bi2Te3 Bi2Te2Se 

(PbTe)-Bi2Te3 

[(PbTe)-Bi2Te3)] – Bi2Te3 

(PbTe)2-Bi2Te3 

LaBiTe3 TlBiTe2 



Bi2Se3	type:	TlBiSe2	and	TlBiTe2	

Yan et al. EPL 90, 37002 (2010), 

TlBiSe2         TlBiTe2 
 

Lin et al. PRL105(3) 036404 (2010), Eremeev et al. JETP Lett. 91(11) 594 (2010). 
39	



Bi2Se3	type:	TlBiSe2	and	TlBiTe2	

Sato et al. PRL 105(13) 136802 (2010), 
Kuroda et al. ibid, 105(14) 146801 (2010), 
Chen et al. ibid, 105(26) 266401 (2010), 
Xu et al. arXiv:1008.3557 (2010). 

TlBiTe2 :Topological superconductor. 
CuxBi2Se3, PdxBi2Te3 
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Search	for	a	weak	3D	TI	
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Z 

Γ 

+ + 

+ - 

+ + 

+ - 

(0;001) 
Weak 3D TI 

ν=1  
2D TI 
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+ - 
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(1;000) 
Strong 3D TI 

Γ - 

+ + 
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+ + 

+ + 

ν1 ν2 
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Generaliza=on	of	Heusler	compounds	

Stacking	2D	TI	layers	

Following	Heusler’s	idea	to	design	a	weak	TI	

Wurzite lattice 

Structure of SrPtAs-type 
unconventional  SC 
Biswas et al., PRB 87, 180503(R) (2013); 
Fisher et al. PRB 89, 020509 (2014) 

ZB  
lattice 



3D	weak	TIs	
Cubic Heusler XYZ  Layered Honeycomb XYZ  

Z. Ringel, Y. Kraus, and A. Stern, Phys. Rev. B 86, 045102 (2012). 

R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Phys. Rev. Lett. 108, 076804 (2012). 

The weak TI has a “strong” side. 

K 

HgSb KHgSb 



Bulk	band	structure	

SOC j=3/2 

j=1/2 

Eg = λsoc , reaching fundamental limit   

EF 

K-s 
Hg-s 

Sb-sp 

j=3/2 

SOC Crystal field 

pxy 

j=1/2 

pz 

s 

s 

K 
HgSb 



BY, Mulechler, Felser. PRL  109, 116406 (2012). 

The	first	3D	weak	TIs	

•  The first weak TI material, KHgSb 
•  Surface state with two Dirac cones 
•  Eg ~ 0.2 eV  >> RT 

side surface 

KHgSb  
(synthesized  in 1980) 



M(k) = M0 – B k//
2 - G kz

2 

Bernevig-Hughes-Zhang model, minimal Hamiltonian 

E 
E 

Turning on inter-layer coupling 

3D	weak	TIs	
Band inversion 

kz 

BY, Mulechler, Felser. PRL  109 (2012) 116406. 

XYZ	



Extract	a	QSH	layer	from	the	layered	
weak	TI	

X-Y-Z 
8 or 18 electrons 

IV-IV 
8 electrons 

IV2-X2 



QSH	layer	
SnF	(QSH)	 SnH	(trivial)	

2D	bulk	

Edge	

s 

p s 
p 

Band inversion at the Γ point, different from graphene. 

Y. Xu, BY, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S.-C. Zhang,  PRL 111, 136804(2013). 

+ −  

Anti-bonding state 
s-band with parity “−” 

Bonding state 
pxy-band with parity “+” 

Sn1 Sn2 

+ −  + −  



QSH	layer	with	large	energy	gap	
Stanene:       SnI 0.4 eV 
Germanene: GeI 0.3 eV 

Recent MBE growth 
Zhu et al.    
arXiv:1506.01601 (2015) 



Gold	surface	
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Gold	surface	
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Gold	surface	

52	

B. Yan et al. Nature Communications 6, 10167 (2015). 



Topological	mirror	insulator	

53	

Fu 2012’ 



Materials	design	for	TIs	

3D strong TI 3D weak TI 2D TI (QSH) QAH 

BaBiO3 
PRL 113, 256401 (2014). 
Nature Physics 9, 709 (2013). 



Topological	insulator	
Time	reversal	
symmetry	(TRS)x	

Weyl	Semimetal	
Non	spin	degenerate	
TRS	and/or	IS	breaking	

3D analoge of  
 graphene 

Fermi arcs 

3D	bulk	 2D	Surface	

Band inversion 

Topological insulators and topological metals 



Summary		

56	

3D analoge of  
 graphene 

Fermi arcs 

3D	bulk	 2D	Surface	

Band inversion 

Thanks	for	your	a3en4on!	

Topological	insulators	
•  Topological	surface	states,	Dirac	cone	
•  2D	TI,	3D	strong	and	weak	TIs	
Topological	metals	(3D	graphene)	
•  Topological	surface	states,	Fermi	arcs	
•  Chiral	anomaly,	MR,	high	mobility	


